北工大汪浩团队 ACB:金属边界限域Pt原子构筑实现多重氢催化转化 – 材料牛
第一作者: 张建华 通讯作者:周开岭,李洪义,大汪队 多重汪浩 通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,浩团化转化材北京工业大学碳中和未来技术学院 论文DOI:10.1016/j.apcatb.2024.124393 全文速览: 单原子材料作为催化领域的金界限一个新兴分支,近年来取得了巨大的属边实现发展。然而,域Pt原因金属位点独立分散特性引起的构筑催化位点不足、质量比活度低,氢催严重阻碍了单原子材料的料牛进一步发展和工业化应用。继在单原子材料组分设计(J. Mater. Chem. A,北工 2022, 10, 25692, Adv. Sci. 2021, 2100347; Energy Environ. Sci. 2020, 13, 3082)和电子态调控(Chem. Eng. J., 2023, 454, 140557; Nat. Commun., 2021, 12, 3783)的基础上,该团队采用缺陷诱导的大汪队 多重有序电沉积策略,在Co/Co(OH)2纳米层级结构中构筑出了金属相界限域的浩团化转化材Pt单原子(PtSA-Co@Co-Co(OH)2)。该Pt原子呈现出较大的金界限原子暴露比、较高的属边实现稳定性和金属电子态,在催化水电解制氢过程中,域Pt原能够在保持富电子态的同时,驱动多重H*反应中间体转化,实现H2高效制备,原子活性高达5.92 A mg-1,是商业Pt/C催化剂的37倍。研究成果以“Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution”为题发表在国际知名期刊Applied Catalysis B: Environment and Energy上,北京工业大学材料学院博士生张建华为第一作者。 背景介绍: 单原子催化剂因其100%的原子利用效率,为多相催化提供了一个理想的平台,在众多关键催化反应中展现出优异的活性和独特的选择性。然而,单分散的金属原子表面能较高,易于团聚。因此,大多数单原子催化剂的金属负载质量低于1.5 wt%,导致催化活性位点不足、质量比活性较低,阻碍了单原子材料的进一步发展和工业化应用。此外,当前大多数单原子催化剂(SACs)的金属原子锚定在载体材料的平面晶格中。然而,平面内原子构型会导致金属原子配位数增加、电子损失率增大,引起金属原子暴露面积减小、原子利用率降低、原子价态升高、还原反应动力学迟缓等问题。因此,如何基于载体材料结构设计和制备手段改性,构筑出具有优异原子构型和电子结构的单原子催化材料,是解决单原子孤立分散特性与高质量活性比之间矛盾的关键。 本文亮点: (1)采用缺陷诱导有序电沉积策略,在二维Co/Co(OH)2多级结构在中,构筑出了金属Co相边界限域的Pt单原子(PtSA-Co@Co-Co(OH)2),实现了高效的电解水制氢; (2)受金属Co相边缘约束的Pt原子显示出较大的金属原子暴露比和类金属电子态,使得该Pt原子能够以更适宜的H结合能(DGH*=-0.00068 eV),同时与多个H*结合,实现多重氢还原转化; (3)将上述构筑的Pt单原子材料集成在银纳米线(Ag NWs)导电网络上,构建出自支撑结构的催化剂电极,实现了催化水电解析氢高达5.92 A mg-1的Pt原子质量活性,是商业Pt/C催化剂的37倍,为高效单原子材料设计提供了新的思路。 图文解析: 利用水热法制备了Ag NWs,并将其涂覆在柔性布料上以形成Ag NWs导电网络。随后,采用多步原位电沉积技术,在Ag NWs导电网络上构筑出了金属边界限域的Pt单原子材料(PtSA-Co@Co-Co(OH)2)。如图1a-d所示,TEM图像表明,PtSA-Co@Co-Co(OH)2主要由层状纳米片结构组成。高分辨率透射电子显微镜(HRTEM,图1e)图像证实了Co(OH)2纳米片表面存在金属Co团簇。图1m中晶面间距约为0.25 nm,对应于Co金属的(100)晶面。放大后的HAADF-STEM图像(图1m)表明,大多数Pt单原子锚定在金属Co纳米簇的边缘,具有较大的原子暴露比。 图1 PtSA-Co@Co-Co(OH)2催化剂微结构表征。 图2利用XPS研究了PtSA-Co@Co-Co(OH)2、PtSA-Co(OH)2和Co-Co(OH)2的电子态演化。PtSA-Co@Co-Co(OH)2的Pt 4f光谱与Pt/C和PtSA-Co(OH)2相比,出现了一定的负位移,说明引入金属Co相后,电子从Co向Pt转移,表明PtSA-Co@Co-Co(OH)2中Pt原子具有较高的电子密度。利用X射线吸收精细结构(XAFS)光谱对所制备催化剂的局部电子结构进行了更详细的研究。可以观察到,PtSA-Co@Co-Co(OH)2中Pt的白线强度低于PtSA-Co(OH)2,证实了PtSA-Co@Co-Co(OH)2中Pt的高的电子密度。且与Co-Co(OH)2相比,PtSA-Co@Co-Co(OH)2中Co 2p能谱的结合能出现了正偏移,证实了金属Co原子向Pt原子发生了电子转移。EXAFS傅立叶变换拟合曲线表明,在2.60 Å处,没有出现Pt foil的典型Pt-Pt键峰,证实了PtSA-Co@Co-Co(OH)2中Pt的单原子分散性。此外,Pt-Co配位数约为1.7,证实了金属Co边缘限域的Pt原子低的配位微环境。这些结果与XPS分析结果一致,表明Pt原子在PtSA-Co@Co-Co(OH)2中固定于金属Co相边缘处可以很好地保留金属性质,有利于加速H*-H2转化动力学。 图2 PtSA-Co@Co-Co(OH)2催化剂原子结构与电子结构表征。 通过理论计算(DFT),进一步揭示了催化剂的电子性质。如图3所示,PtSA-Co@Co-Co(OH)2的d带中心处于适中位置,有利于H*吸附和H2解吸。且PtSA-Co@Co-Co(OH)2和PtSA-Co在EF附近的电子占位率高于PtSA-Co(OH)2,证实了金属Co相边缘锚定的Pt原子具有较高的电子保留率。理论计算进一步表明,通过H*和OH*分别在PtSA-Co和Co/Co(OH)2界面上的优先吸附,能够促进H2O解离,加速碱性电解水的Volmer步骤。此外,金属Co相边缘固定的Pt原子显示出较大的Pt原子暴露比和适宜的H吸附自由能(∆GH*,-0.00068 eV),能够同时促进多重H*转化(2H*+2e-®H2)),从而实现了碱性电解水制氢性能的整体提升。 图3 PtSA-Co@Co-Co(OH)2催化剂在碱性电解水催化过程的理论计算。 如图4所示,通过催化性能测试可知,PtSA-Co@Co-Co(OH)2催化剂在HER中表现出优异的性能,只需要97 mV的低过电位就可以达到100 mA cm-2的高电流密度。这一性能明显优于PtSA-Co(OH)2、PtSA-Co和Pt/C催化剂,表明在碱性介质中,通过在金属Co相边缘构建Pt单原子,能够获得最佳的HER活性。此外,与PtSA-Co(OH)2和PtSA-Co相比,PtSA-Co@Co-Co(OH)2的Tafel斜率更小,为43.03 mV dec-1,验证了PtSA-Co@Co-Co(OH)2在碱性HER中的典型Volmer-heyrovsky机制,与上述理论模拟结果保持一致。在过电位为100 mV时,PtSA-Co@Co-Co(OH)2的Pt质量活性为5.92 A mg-1,比商用Pt/C催化剂高37倍, Pt原子位点的转换频率(TOFs)比Pt/C催化剂高38.88倍,进一步证实通过在金属Co相边缘构建Pt单原子进行多重H*转化和析出,可以显著提高单原子催化剂的质量活性。 图4 PtSA-Co@Co-Co(OH)2催化剂碱性电催化HER性能。 为进一步探究上述催化反应机理,利用原位傅立叶红外光谱仪(ATR-FTIR),探究了PtSA-Co@Co-Co(OH)2催化反应中的吸附物动态演变。如图5a所示,随着电位的增加,PtSA-Co@Co-Co(OH)2的ATR-FTIR光谱在3525 cm-1处吸收带逐渐增强,对应于H3O+中O-H基团的拉伸振动,证实了H2O解离的促进作用。在2017 cm-1处的吸收带也呈现出逐渐增强的趋势,对应于Pt-H的拉伸振动。此外,PtSA-Co@Co-Co(OH)2能够在40小时内保持稳定的H3O+和Pt-H吸收信号(图5b),证实了金属边缘限制的Pt原子在Co/Co(OH)2层级结构中的稳定原子结构,上述催化反应机制通过准原位XPS分析也可以得到证实(图5c-e)。 图5 基于原位/准原位测试表征手段的机理分析。 总结与展望: 本文报道了一种由Co/Co(OH)2层次结构金属相边界限域的Pt单原子催化剂(PtSA-Co@Co-Co(OH)2)。实验测试表明,在100 mA cm-2的电流密度下,所设计的催化剂具有较高的碱性HER性能,过电位为97 mV时,质量活性达到5.92 A cm-2,是商业Pt/C催化剂的37倍。原位/非原位实验表征和理论计算表明,PtSA-Co@Co-Co(OH)2具有较强的H2O吸附能力和解离能力,其中,H*在PtSA-Co金属表面的优先吸附和Co/Co(OH)2界面对OH*的优先亲和性,促进了H2O的解离(Volmer步骤)。更重要的是,通过将Pt原子锚定在金属Co边缘,能够获得更大的Pt原子暴露比和更高的电子占据态,使得该Pt单原子能够以更适宜的亲和能同时结合多个H原子,促进多重H*-H2转化和H2的脱附。该金属相边界协同的单原子催化剂有助于解决传统单原子材料所面临的单分散特征与高质量活性间不兼容的问题。 文献信息: Jianhua Zhang, JianYu Cai, Kai-Ling Zhou,* Hong-Yi Li,* Jingbing Liu, Yuhong Jin, and Hao Wang,* Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution, Applied Catalysis B: Environment and Energy 358 (2024) 124393. https://doi.org/10.1016/j.apcatb.2024.124393 课题组介绍 汪浩:北京工业大学教授,博士生导师。长期从事锂离子电池、金属-空气电池、电致变色材料与器件、电催化等方面的研究。以通讯作者在化学、材料领域国际知名期刊Nat. Commun., Energy Environ. Sci., Nano Energy,Adv. Energy Mater., Adv. Funct. Mater., Appl. Catal. B-Environ., Energy Storage Mater., Mater. Horiz., Chem. Eng. J., J. Mater. Chem. A, Small等上面发表SCI论文100余篇,SCI引用5000余次,获得中国发明专利60余项。主持国家重点研发计划、国家自然科学基金、北京市科委计划项目、北京市教委科技计划重点项目、JKW装备预研项目、国家电网公司科技计划等项目。以第一完成人获2008年北京市科技进步三等奖。 周开岭:北京工业大学校聘教授,博士生导师,入选2023-2025年度北京市青年人才托举工程,获2022年北京市优秀博士论文,2022年中国硅酸盐学会优秀博士学位论文提名等。目前主要围绕氢能关键材料与技术展开相关研究工作,主持国家自然科学基金、中国博士后科学基金、北京市博后基金、企事业委托项目等。以第一作者和通讯作者身份在Nature Communications、Energy & Environmental Science、Appl. Catal. B Environ.Energy等国际一流刊物上发表SCI论文30余篇;总引用次数超过1500余次,2篇入选 ESI前1%高被引论文。 李洪义:北京工业大学教授,博士生导师,2013年入选北京市“青年拔尖人才”培养计划,2014年入选北京市“高创计划”青年拔尖人才,2016年入选了北京工业大学“青年百人”人才计划。2013年1月-2014年1月公派赴麻省理工学院进行访问研究1年,主要从事原位透射电镜观察一维纳米材料充放电过程中材料微观结构变化规律及其储锂机制。在Nano Research、Nanoscale、Biomaterials、ACS Appl. Mater. Inter.等期刊上发表SCI收录论文80余篇,引用1000余次。主持国家自然科学基金2项,北京市自然科学基金重点项目在内的省部级以上课题8项;作为骨干人员,参与国家重点研发计划、863计划、北京市创新团队等项目10余项。
- 最近发表
- 随机阅读
-
- 特斯推推出超小大型太阳能屋顶 卖价仅需19万元
- 花呗支钱恳求揭示:您的账户不开适激进条件若何办?
- 罕有抗癌神药若何回事?罕有抗癌神药真有下场吗?底细掀秘
- 5G足机卖价多少 5G足机哪一个品牌好?
- 光伏扶贫电站:不但劣先拿补掀,借劣先救命!
- 探维科技明相EAC2024易贸汽车财富小大会
- 2019年中国联通若何激进VoLTE?联通VoLTE夷易近圆激进教程
- 吕开国/张利强/周明/叶志镇 Chemical Engineering Journal: 超快充、宽温域、长命命钠离子电池背极质料 – 质料牛
- 删混车型销量删减新推足 宁德时期赋能车企抢占市场新下天
- 微疑流离瓶进心正在哪 若何玩微疑流离瓶?
- 辽宁多论理教去世被碰是若何回事 伤情若何?辽宁多论理教去世被碰视频(时少42s)
- 暨北小大教唐群委团队ACS Nano:里背低频海浪能会集的多轨讲定背自力层式磨擦纳米收机电 – 质料牛
- 下新区尾坐“光储充放”超充树模站正在BPO园区正式明相
- 微粒贷进心正在哪?微粒贷若何告贷 微粒贷有哪些告贷格式
- 北京小大教余林蔚传授课题组柔性径背结叠层太阳能电池新仄息 – 质料牛
- 哈佛小大教李鑫最新Nature:固态锂金属电池的动态晃动性妄想合计 – 质料牛
- 风电“热”了仄型闭下的村落降
- 拼多多APP下架是若何回事?拼多多强横睁开的眼前靠的是甚么?
- 花呗支钱恳求揭示:您的账户不开适激进条件若何办?
- 抖音我要找到您不管北北工具是甚么歌 抖音连音社我要找到您残缺版正在线支听下载
- 搜索
-
- 友情链接
-
- 德国逾越19万套插进式光伏系统并网
- 景兴纸业拟2593万元投建光伏收电名目
- 剩余分类驿站用上光伏收电
- 国家能源局:扩散式并网难题 成新能源歌咏尾要问题下场
- 青岛天铁光伏收电名目并网收电 年提供330万度净净电力
- 给扩散式光伏收电配上“智能管家”
- 温州尾个“牧光互补”扩散式光伏收电名目投运
- 特斯推停息安拆太阳能电池板 客户屋顶“漏雨”
- 机构:2025年屋顶太阳能拆机容量将抵达94.7凶瓦
- 重磅!检查各省光伏名目存案情景!
- 山东匹里劈头核查光伏用天情景,今日起停止光伏名目用天占用耕天存案
- 豫能控股:拟5.9亿元投建多个扩散式光伏名目
- 风电下乡 风心已经去!
- 临翔区扩散式光伏收电名目开工
- 国家能源局将光伏列为村落降复原定面帮扶哺育财富
- 钻研职员真验于海上操做的薄膜流离光伏系统
- 雄安下铁站站顶光伏累计收电超1000万千瓦时
- 江苏光伏收电卖电第一人晒出进:1年杂支益1万多
- 缓丽英:做光伏财富的“女强人”
- 国网江苏电力扩散式光伏收电功率展看细度达小时级
- 江汉油田建成尾个水上游离式光伏名目
- 东圆日降出席光伏“好汉小大会”,论讲600W+扩散式产物降级
- 光伏修筑一体化止业尾个晶硅光伏瓦尺度宣告
- 淄专获批齐国尾个小大型牧光互补光伏名目
- 深圳燃气扩散式光伏名目降天坪山
- 张北县奉止光伏“同天联建”服从赫然
- 宁夏银川:“网上电网”助力养殖基天扩散式光伏斥天
- 枣庄尾例扩散式光伏电站同享储能租赁真现“整”的突破
- 让阳光为农牧仄易远重糊心赋能
- 晶科能源BIPV彩钢瓦:好异化开做带去好异化价钱
- 河北郑州管乡区拷打屋顶光伏名目降天去世效
- 隆基尾个煤矿止业BIPV名目正在陕北拜托
- 迁西“扩散式光伏+煤改电”惠及墟落公共8530户
- 广东科源电气枯获2022年度“一两次流利融会成套环网箱10强企业”声誉称吸
- 晶科能源“晶彩BIPV”工商业屋顶经济性比力下风
- 亚洲最小大滩涂渔光互补收电并网
- 进军修筑光伏!振华重工拟开资设坐修筑光伏公司
- 比利时屋顶光伏收电后劲估量达99.6 GW
- 屋顶收电收烧友的祸音:憬芯科技扩散式光伏足艺处事仄台SGO今日上线
- 山东一建启建的山东尾个海上光伏试面名目开工
- 解困占天瓶颈光伏农业助力碳达峰碳中战
- 渔光互补名目用天需闭注的多少个特意法律问题下场
- 豫能控股拟8.06亿元投建多个扩散式光伏名目
- 给光伏进网配置装备部署拆上“把守器”战“远控器”
- 上海尾批扩散式光伏收电减油站并网投运
- 内受古库伦旗23座村落级光伏扶贫电站助力村落降复原
- 为甚么600W+组件是扩散式光伏去世少“新引擎”?
- 摩天小大楼变身垂直太阳能收电场
- 腾格里沙漠3GW新能源基天光伏复开名目开工
- 四川尾个“水光互补”亭子心扩散式光伏名目开工
- 齐球最小大流离式风电名目Hywind Tampen尾台机组吊拆!
- 收电量不达标 某光伏EPC工程商被起诉!
- 齐球单机容量最小大流离式机组重磅宣告
- 山东日照“农光互补”助农删支
- 新删1.93GW!10月户用光伏拆机初次降降
- 中原油田尾个屋顶式光伏收电名目真现碳中战
- 祸建下速尾批屋顶光伏电站开工建设
- 盐乡天域整县屋顶扩散式光伏斥天试面仄息情景座讲会召开
- 喜疑:国能日新山西分说式风电名目散开并网运行
- 台湾启动1GW流离式海下风电!