北工大汪浩团队 ACB:金属边界限域Pt原子构筑实现多重氢催化转化 – 材料牛
第一作者: 张建华 通讯作者:周开岭,李洪义,大汪队 多重汪浩 通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,浩团化转化材北京工业大学碳中和未来技术学院 论文DOI:10.1016/j.apcatb.2024.124393 全文速览: 单原子材料作为催化领域的金界限一个新兴分支,近年来取得了巨大的属边实现发展。然而,域Pt原因金属位点独立分散特性引起的构筑催化位点不足、质量比活度低,氢催严重阻碍了单原子材料的料牛进一步发展和工业化应用。继在单原子材料组分设计(J. Mater. Chem. A,北工 2022, 10, 25692, Adv. Sci. 2021, 2100347; Energy Environ. Sci. 2020, 13, 3082)和电子态调控(Chem. Eng. J., 2023, 454, 140557; Nat. Commun., 2021, 12, 3783)的基础上,该团队采用缺陷诱导的大汪队 多重有序电沉积策略,在Co/Co(OH)2纳米层级结构中构筑出了金属相界限域的浩团化转化材Pt单原子(PtSA-Co@Co-Co(OH)2)。该Pt原子呈现出较大的金界限原子暴露比、较高的属边实现稳定性和金属电子态,在催化水电解制氢过程中,域Pt原能够在保持富电子态的同时,驱动多重H*反应中间体转化,实现H2高效制备,原子活性高达5.92 A mg-1,是商业Pt/C催化剂的37倍。研究成果以“Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution”为题发表在国际知名期刊Applied Catalysis B: Environment and Energy上,北京工业大学材料学院博士生张建华为第一作者。 背景介绍: 单原子催化剂因其100%的原子利用效率,为多相催化提供了一个理想的平台,在众多关键催化反应中展现出优异的活性和独特的选择性。然而,单分散的金属原子表面能较高,易于团聚。因此,大多数单原子催化剂的金属负载质量低于1.5 wt%,导致催化活性位点不足、质量比活性较低,阻碍了单原子材料的进一步发展和工业化应用。此外,当前大多数单原子催化剂(SACs)的金属原子锚定在载体材料的平面晶格中。然而,平面内原子构型会导致金属原子配位数增加、电子损失率增大,引起金属原子暴露面积减小、原子利用率降低、原子价态升高、还原反应动力学迟缓等问题。因此,如何基于载体材料结构设计和制备手段改性,构筑出具有优异原子构型和电子结构的单原子催化材料,是解决单原子孤立分散特性与高质量活性比之间矛盾的关键。 本文亮点: (1)采用缺陷诱导有序电沉积策略,在二维Co/Co(OH)2多级结构在中,构筑出了金属Co相边界限域的Pt单原子(PtSA-Co@Co-Co(OH)2),实现了高效的电解水制氢; (2)受金属Co相边缘约束的Pt原子显示出较大的金属原子暴露比和类金属电子态,使得该Pt原子能够以更适宜的H结合能(DGH*=-0.00068 eV),同时与多个H*结合,实现多重氢还原转化; (3)将上述构筑的Pt单原子材料集成在银纳米线(Ag NWs)导电网络上,构建出自支撑结构的催化剂电极,实现了催化水电解析氢高达5.92 A mg-1的Pt原子质量活性,是商业Pt/C催化剂的37倍,为高效单原子材料设计提供了新的思路。 图文解析: 利用水热法制备了Ag NWs,并将其涂覆在柔性布料上以形成Ag NWs导电网络。随后,采用多步原位电沉积技术,在Ag NWs导电网络上构筑出了金属边界限域的Pt单原子材料(PtSA-Co@Co-Co(OH)2)。如图1a-d所示,TEM图像表明,PtSA-Co@Co-Co(OH)2主要由层状纳米片结构组成。高分辨率透射电子显微镜(HRTEM,图1e)图像证实了Co(OH)2纳米片表面存在金属Co团簇。图1m中晶面间距约为0.25 nm,对应于Co金属的(100)晶面。放大后的HAADF-STEM图像(图1m)表明,大多数Pt单原子锚定在金属Co纳米簇的边缘,具有较大的原子暴露比。 图1 PtSA-Co@Co-Co(OH)2催化剂微结构表征。 图2利用XPS研究了PtSA-Co@Co-Co(OH)2、PtSA-Co(OH)2和Co-Co(OH)2的电子态演化。PtSA-Co@Co-Co(OH)2的Pt 4f光谱与Pt/C和PtSA-Co(OH)2相比,出现了一定的负位移,说明引入金属Co相后,电子从Co向Pt转移,表明PtSA-Co@Co-Co(OH)2中Pt原子具有较高的电子密度。利用X射线吸收精细结构(XAFS)光谱对所制备催化剂的局部电子结构进行了更详细的研究。可以观察到,PtSA-Co@Co-Co(OH)2中Pt的白线强度低于PtSA-Co(OH)2,证实了PtSA-Co@Co-Co(OH)2中Pt的高的电子密度。且与Co-Co(OH)2相比,PtSA-Co@Co-Co(OH)2中Co 2p能谱的结合能出现了正偏移,证实了金属Co原子向Pt原子发生了电子转移。EXAFS傅立叶变换拟合曲线表明,在2.60 Å处,没有出现Pt foil的典型Pt-Pt键峰,证实了PtSA-Co@Co-Co(OH)2中Pt的单原子分散性。此外,Pt-Co配位数约为1.7,证实了金属Co边缘限域的Pt原子低的配位微环境。这些结果与XPS分析结果一致,表明Pt原子在PtSA-Co@Co-Co(OH)2中固定于金属Co相边缘处可以很好地保留金属性质,有利于加速H*-H2转化动力学。 图2 PtSA-Co@Co-Co(OH)2催化剂原子结构与电子结构表征。 通过理论计算(DFT),进一步揭示了催化剂的电子性质。如图3所示,PtSA-Co@Co-Co(OH)2的d带中心处于适中位置,有利于H*吸附和H2解吸。且PtSA-Co@Co-Co(OH)2和PtSA-Co在EF附近的电子占位率高于PtSA-Co(OH)2,证实了金属Co相边缘锚定的Pt原子具有较高的电子保留率。理论计算进一步表明,通过H*和OH*分别在PtSA-Co和Co/Co(OH)2界面上的优先吸附,能够促进H2O解离,加速碱性电解水的Volmer步骤。此外,金属Co相边缘固定的Pt原子显示出较大的Pt原子暴露比和适宜的H吸附自由能(∆GH*,-0.00068 eV),能够同时促进多重H*转化(2H*+2e-®H2)),从而实现了碱性电解水制氢性能的整体提升。 图3 PtSA-Co@Co-Co(OH)2催化剂在碱性电解水催化过程的理论计算。 如图4所示,通过催化性能测试可知,PtSA-Co@Co-Co(OH)2催化剂在HER中表现出优异的性能,只需要97 mV的低过电位就可以达到100 mA cm-2的高电流密度。这一性能明显优于PtSA-Co(OH)2、PtSA-Co和Pt/C催化剂,表明在碱性介质中,通过在金属Co相边缘构建Pt单原子,能够获得最佳的HER活性。此外,与PtSA-Co(OH)2和PtSA-Co相比,PtSA-Co@Co-Co(OH)2的Tafel斜率更小,为43.03 mV dec-1,验证了PtSA-Co@Co-Co(OH)2在碱性HER中的典型Volmer-heyrovsky机制,与上述理论模拟结果保持一致。在过电位为100 mV时,PtSA-Co@Co-Co(OH)2的Pt质量活性为5.92 A mg-1,比商用Pt/C催化剂高37倍, Pt原子位点的转换频率(TOFs)比Pt/C催化剂高38.88倍,进一步证实通过在金属Co相边缘构建Pt单原子进行多重H*转化和析出,可以显著提高单原子催化剂的质量活性。 图4 PtSA-Co@Co-Co(OH)2催化剂碱性电催化HER性能。 为进一步探究上述催化反应机理,利用原位傅立叶红外光谱仪(ATR-FTIR),探究了PtSA-Co@Co-Co(OH)2催化反应中的吸附物动态演变。如图5a所示,随着电位的增加,PtSA-Co@Co-Co(OH)2的ATR-FTIR光谱在3525 cm-1处吸收带逐渐增强,对应于H3O+中O-H基团的拉伸振动,证实了H2O解离的促进作用。在2017 cm-1处的吸收带也呈现出逐渐增强的趋势,对应于Pt-H的拉伸振动。此外,PtSA-Co@Co-Co(OH)2能够在40小时内保持稳定的H3O+和Pt-H吸收信号(图5b),证实了金属边缘限制的Pt原子在Co/Co(OH)2层级结构中的稳定原子结构,上述催化反应机制通过准原位XPS分析也可以得到证实(图5c-e)。 图5 基于原位/准原位测试表征手段的机理分析。 总结与展望: 本文报道了一种由Co/Co(OH)2层次结构金属相边界限域的Pt单原子催化剂(PtSA-Co@Co-Co(OH)2)。实验测试表明,在100 mA cm-2的电流密度下,所设计的催化剂具有较高的碱性HER性能,过电位为97 mV时,质量活性达到5.92 A cm-2,是商业Pt/C催化剂的37倍。原位/非原位实验表征和理论计算表明,PtSA-Co@Co-Co(OH)2具有较强的H2O吸附能力和解离能力,其中,H*在PtSA-Co金属表面的优先吸附和Co/Co(OH)2界面对OH*的优先亲和性,促进了H2O的解离(Volmer步骤)。更重要的是,通过将Pt原子锚定在金属Co边缘,能够获得更大的Pt原子暴露比和更高的电子占据态,使得该Pt单原子能够以更适宜的亲和能同时结合多个H原子,促进多重H*-H2转化和H2的脱附。该金属相边界协同的单原子催化剂有助于解决传统单原子材料所面临的单分散特征与高质量活性间不兼容的问题。 文献信息: Jianhua Zhang, JianYu Cai, Kai-Ling Zhou,* Hong-Yi Li,* Jingbing Liu, Yuhong Jin, and Hao Wang,* Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution, Applied Catalysis B: Environment and Energy 358 (2024) 124393. https://doi.org/10.1016/j.apcatb.2024.124393 课题组介绍 汪浩:北京工业大学教授,博士生导师。长期从事锂离子电池、金属-空气电池、电致变色材料与器件、电催化等方面的研究。以通讯作者在化学、材料领域国际知名期刊Nat. Commun., Energy Environ. Sci., Nano Energy,Adv. Energy Mater., Adv. Funct. Mater., Appl. Catal. B-Environ., Energy Storage Mater., Mater. Horiz., Chem. Eng. J., J. Mater. Chem. A, Small等上面发表SCI论文100余篇,SCI引用5000余次,获得中国发明专利60余项。主持国家重点研发计划、国家自然科学基金、北京市科委计划项目、北京市教委科技计划重点项目、JKW装备预研项目、国家电网公司科技计划等项目。以第一完成人获2008年北京市科技进步三等奖。 周开岭:北京工业大学校聘教授,博士生导师,入选2023-2025年度北京市青年人才托举工程,获2022年北京市优秀博士论文,2022年中国硅酸盐学会优秀博士学位论文提名等。目前主要围绕氢能关键材料与技术展开相关研究工作,主持国家自然科学基金、中国博士后科学基金、北京市博后基金、企事业委托项目等。以第一作者和通讯作者身份在Nature Communications、Energy & Environmental Science、Appl. Catal. B Environ.Energy等国际一流刊物上发表SCI论文30余篇;总引用次数超过1500余次,2篇入选 ESI前1%高被引论文。 李洪义:北京工业大学教授,博士生导师,2013年入选北京市“青年拔尖人才”培养计划,2014年入选北京市“高创计划”青年拔尖人才,2016年入选了北京工业大学“青年百人”人才计划。2013年1月-2014年1月公派赴麻省理工学院进行访问研究1年,主要从事原位透射电镜观察一维纳米材料充放电过程中材料微观结构变化规律及其储锂机制。在Nano Research、Nanoscale、Biomaterials、ACS Appl. Mater. Inter.等期刊上发表SCI收录论文80余篇,引用1000余次。主持国家自然科学基金2项,北京市自然科学基金重点项目在内的省部级以上课题8项;作为骨干人员,参与国家重点研发计划、863计划、北京市创新团队等项目10余项。
- 最近发表
- 随机阅读
-
- 新疆试面供电所屋顶建光伏电站
- Science子刊,锂电支受收受新格式! – 质料牛
- 狼人杀技术本领:新足预言家若何讲话才气与疑于人?
- 陈忠伟院士团队:校企散漫、跨国开做!滑铁卢小大教、浙江师范小大教携手齐球氢燃料电池巨头巴推德能源系统,真现非铂催化剂从科研背财富的迈进 – 质料牛
- 【江湖数据】9月份我国煤冰进心去历扩散
- 后摩智能与联念携手共创AI PC新纪元
- 正在昨日的第一条推文中,12月3日
- 梭子蟹的渔汛一年有多少回
- 北京市第八批扩散式光伏收电名目贬责名单公示
- Science子刊,锂电支受收受新格式! – 质料牛
- 好光华与第九代TLC NAND足艺的SSD产物量产
- 天津小大教/河工小大CEJ:数据驱动设念最劣尺寸金属基催化剂质料 – 质料牛
- 再下一乡!爱旭带ABC光伏组件进进“25%”时期
- 讯维智能语音转写系统确保企业数据的牢靠性
- 是德科技患上到5G NR FR1 1024
- 梭子蟹的渔汛一年有多少回
- 绿色修筑时期惠临 BIPV静待花开
- 埃妇特斥资不超19亿,挨制机械人超级工场
- 重庆科技教院/青岛小大教J. Electroanal. Chem.:丨4,4’
- 小先天电话腕表若何用支出宝
- 搜索
-
- 友情链接
-
- 正在昨日推文中,减进文终抓好汉行动,有机缘患上到钟馗哪款皮肤呢
- 正在昨日肌肤曝料的推本文中,猪八戒的西游戏限度皮肤名字是甚么
- 我正在江北君正在北是甚么歌?《片片相思给予谁》晓依本版mp3正在线试听及歌词介绍
- Nature Chemistry:同量互脱金属
- 宏景智驾与芯擎科技携手,真车验证“舱泊一体”坐异妄想
- Alphawave推出业界尾款反对于台积电CoWoS启拆的3nm UCIe IP
- EES:增长露氧盐水电容性往离子的金属
- 单簿本催化!!新减坡国坐/浑华/EPFL/A*STAR四校联收Nature! – 质料牛
- Advanced Science:一种经由历程单强化历程构建兴铅膏超快捷可支受收受删值脱硫格式 – 质料牛
- NVIDIA GB200超级芯片引收液热散热新纪元
- 微疑缓存若何浑算?微疑浑算缓存格式分享
- 蚂蚁庄园10月10日谜底是甚么
- 蚂蚁庄园10月24日谜底是甚么
- 湘潭小大膏水好汉Carbon:光驱动无酶光电化教传感器用于超锐敏检测 L
- 《王者声誉》86版西纪止八戒皮肤 减进行动收费患上
- 极速狩猎新赛季水热开幕 《猎魂醉觉》重阳行动激情开启
- 广西小大教段青山专士Nano Energy:耐水的纤维素磨擦电质料 – 质料牛
- 诺贝我奖至古出有设坐如下哪一个教科的奖项
- 正在昨日具备西纪止系列限度皮肤孙悟空
- Science: 簿本缺陷激发了梯度晶胞挨算开金正在极高温下的卓越应变硬化 – 质料牛
- 蚂蚁庄园10月12日谜底是甚么
- 蚂蚁庄园10月18日谜底是甚么
- AMD财报明面:净利润飙降,数据中间歇业翻倍删减
- 蚂蚁庄园10月11日谜底是甚么
- 西南小大教左良教授最新Nature:仄带λ
- 奥比中光与英伟达深入机械人场景开做
- 天芯科技实现远亿元B+轮融,减速下端模拟射频芯片去世少
- 北航PNAS:用于可编程超质料的“机械”傅里叶变更 – 质料牛
- 正在昨日的推文中,广袤荒凉的
- 渤海小大教姚传刚&蔡克迪ACS Sustain. Chem. Eng.:一种具备下效ORR催化活性战CO2耐受性的单钙钛矿型SOFC阳极质料 – 质料牛
- 三星电子第两季度事业超预期,芯片撤斲丧电子展现单薄
- 此芯科技宣告“此芯P1”同构下能效芯片,引收AI PC新纪元
- 深圳小大教Adv. Mater.:本位固化的固态散开物电解量助力下功能固态锂金属电池 – 质料牛
- 正在昨日推文中,妲己宝宝带去的王者声誉六周年思念版齐好汉头像是
- TE SCHRACK SR4系列继电器斲丧线正式降天投产
- 好光量产第九代NAND闪存足艺产物
- 正在昨日推文中,王者六周年限度皮肤的主题,是中国传统四艺的哪种呢
- 韩国工程院院士Yang
- 有机膜分足足艺最新Science!!! – 质料牛
- 北航郭林PNAS: 电催化尿素分解新策略 – 质料牛
- 正在昨日衰典起宣的推文中,为贺喜周年庆衰典,小大家可能收到
- SynSense时识科技获数亿元策略投资,减速类脑足艺财富化
- 正在昨日的尾篇推文中,妲己的新皮肤称吸是甚么呢
- 北理工Nature Water:太阳能淡水浓化新格式 – 质料牛
- 他 进选2023年度35岁如下科技坐异35人齐球榜单 – 质料牛
- Nat. Co妹妹un.:基于先进光纤传感足艺的商用锂离子电池热掉踪控本位监测 – 质料牛
- DRAM与NAND市场迎下删减,2024年支进飙降
- 洗头收时护收素可能直接涂抹正在头皮上吗
- 天下先进Q3产能操做率有看上降,但明年半导体业删减存疑
- 蚂蚁庄园10月15日谜底是甚么
- JACS.: 多级孔共价有机框架颗粒的组开分解及其催化操做 – 质料牛
- 中北小大教张宁教授/刘敏教授Nano Energy: 匮电子钴纳米晶增长硝酸根电催化复原复原分解氨 – 质料牛
- 专真结守业板上市,助力物联网财富去世少
- 正在昨日尾条六周年CG动绘的推文中,那段CG的称吸是甚么
- 浑华小大教陈翔团队JACS:机械进建助力锂离子电池电解量设念 – 质料牛
- 正在我国秋雨贵如油的讲法残缺天域皆开用吗
- 具备国家级非遗“瑶族耍歌堂”、“瑶族少饱动”的墟落是
- 正在昨日推文中,六周年思念版头像的第一部份是
- Nature Energy:将量子陶瓷电化教电池的工做温度降降至<450 °C – 质料牛
- 蚂蚁庄园10月22日谜底是甚么