北工大汪浩团队 ACB:金属边界限域Pt原子构筑实现多重氢催化转化 – 材料牛
第一作者: 张建华 通讯作者:周开岭,李洪义,大汪队 多重汪浩 通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,浩团化转化材北京工业大学碳中和未来技术学院 论文DOI:10.1016/j.apcatb.2024.124393 全文速览: 单原子材料作为催化领域的金界限一个新兴分支,近年来取得了巨大的属边实现发展。然而,域Pt原因金属位点独立分散特性引起的构筑催化位点不足、质量比活度低,氢催严重阻碍了单原子材料的料牛进一步发展和工业化应用。继在单原子材料组分设计(J. Mater. Chem. A,北工 2022, 10, 25692, Adv. Sci. 2021, 2100347; Energy Environ. Sci. 2020, 13, 3082)和电子态调控(Chem. Eng. J., 2023, 454, 140557; Nat. Commun., 2021, 12, 3783)的基础上,该团队采用缺陷诱导的大汪队 多重有序电沉积策略,在Co/Co(OH)2纳米层级结构中构筑出了金属相界限域的浩团化转化材Pt单原子(PtSA-Co@Co-Co(OH)2)。该Pt原子呈现出较大的金界限原子暴露比、较高的属边实现稳定性和金属电子态,在催化水电解制氢过程中,域Pt原能够在保持富电子态的同时,驱动多重H*反应中间体转化,实现H2高效制备,原子活性高达5.92 A mg-1,是商业Pt/C催化剂的37倍。研究成果以“Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution”为题发表在国际知名期刊Applied Catalysis B: Environment and Energy上,北京工业大学材料学院博士生张建华为第一作者。 背景介绍: 单原子催化剂因其100%的原子利用效率,为多相催化提供了一个理想的平台,在众多关键催化反应中展现出优异的活性和独特的选择性。然而,单分散的金属原子表面能较高,易于团聚。因此,大多数单原子催化剂的金属负载质量低于1.5 wt%,导致催化活性位点不足、质量比活性较低,阻碍了单原子材料的进一步发展和工业化应用。此外,当前大多数单原子催化剂(SACs)的金属原子锚定在载体材料的平面晶格中。然而,平面内原子构型会导致金属原子配位数增加、电子损失率增大,引起金属原子暴露面积减小、原子利用率降低、原子价态升高、还原反应动力学迟缓等问题。因此,如何基于载体材料结构设计和制备手段改性,构筑出具有优异原子构型和电子结构的单原子催化材料,是解决单原子孤立分散特性与高质量活性比之间矛盾的关键。 本文亮点: (1)采用缺陷诱导有序电沉积策略,在二维Co/Co(OH)2多级结构在中,构筑出了金属Co相边界限域的Pt单原子(PtSA-Co@Co-Co(OH)2),实现了高效的电解水制氢; (2)受金属Co相边缘约束的Pt原子显示出较大的金属原子暴露比和类金属电子态,使得该Pt原子能够以更适宜的H结合能(DGH*=-0.00068 eV),同时与多个H*结合,实现多重氢还原转化; (3)将上述构筑的Pt单原子材料集成在银纳米线(Ag NWs)导电网络上,构建出自支撑结构的催化剂电极,实现了催化水电解析氢高达5.92 A mg-1的Pt原子质量活性,是商业Pt/C催化剂的37倍,为高效单原子材料设计提供了新的思路。 图文解析: 利用水热法制备了Ag NWs,并将其涂覆在柔性布料上以形成Ag NWs导电网络。随后,采用多步原位电沉积技术,在Ag NWs导电网络上构筑出了金属边界限域的Pt单原子材料(PtSA-Co@Co-Co(OH)2)。如图1a-d所示,TEM图像表明,PtSA-Co@Co-Co(OH)2主要由层状纳米片结构组成。高分辨率透射电子显微镜(HRTEM,图1e)图像证实了Co(OH)2纳米片表面存在金属Co团簇。图1m中晶面间距约为0.25 nm,对应于Co金属的(100)晶面。放大后的HAADF-STEM图像(图1m)表明,大多数Pt单原子锚定在金属Co纳米簇的边缘,具有较大的原子暴露比。 图1 PtSA-Co@Co-Co(OH)2催化剂微结构表征。 图2利用XPS研究了PtSA-Co@Co-Co(OH)2、PtSA-Co(OH)2和Co-Co(OH)2的电子态演化。PtSA-Co@Co-Co(OH)2的Pt 4f光谱与Pt/C和PtSA-Co(OH)2相比,出现了一定的负位移,说明引入金属Co相后,电子从Co向Pt转移,表明PtSA-Co@Co-Co(OH)2中Pt原子具有较高的电子密度。利用X射线吸收精细结构(XAFS)光谱对所制备催化剂的局部电子结构进行了更详细的研究。可以观察到,PtSA-Co@Co-Co(OH)2中Pt的白线强度低于PtSA-Co(OH)2,证实了PtSA-Co@Co-Co(OH)2中Pt的高的电子密度。且与Co-Co(OH)2相比,PtSA-Co@Co-Co(OH)2中Co 2p能谱的结合能出现了正偏移,证实了金属Co原子向Pt原子发生了电子转移。EXAFS傅立叶变换拟合曲线表明,在2.60 Å处,没有出现Pt foil的典型Pt-Pt键峰,证实了PtSA-Co@Co-Co(OH)2中Pt的单原子分散性。此外,Pt-Co配位数约为1.7,证实了金属Co边缘限域的Pt原子低的配位微环境。这些结果与XPS分析结果一致,表明Pt原子在PtSA-Co@Co-Co(OH)2中固定于金属Co相边缘处可以很好地保留金属性质,有利于加速H*-H2转化动力学。 图2 PtSA-Co@Co-Co(OH)2催化剂原子结构与电子结构表征。 通过理论计算(DFT),进一步揭示了催化剂的电子性质。如图3所示,PtSA-Co@Co-Co(OH)2的d带中心处于适中位置,有利于H*吸附和H2解吸。且PtSA-Co@Co-Co(OH)2和PtSA-Co在EF附近的电子占位率高于PtSA-Co(OH)2,证实了金属Co相边缘锚定的Pt原子具有较高的电子保留率。理论计算进一步表明,通过H*和OH*分别在PtSA-Co和Co/Co(OH)2界面上的优先吸附,能够促进H2O解离,加速碱性电解水的Volmer步骤。此外,金属Co相边缘固定的Pt原子显示出较大的Pt原子暴露比和适宜的H吸附自由能(∆GH*,-0.00068 eV),能够同时促进多重H*转化(2H*+2e-®H2)),从而实现了碱性电解水制氢性能的整体提升。 图3 PtSA-Co@Co-Co(OH)2催化剂在碱性电解水催化过程的理论计算。 如图4所示,通过催化性能测试可知,PtSA-Co@Co-Co(OH)2催化剂在HER中表现出优异的性能,只需要97 mV的低过电位就可以达到100 mA cm-2的高电流密度。这一性能明显优于PtSA-Co(OH)2、PtSA-Co和Pt/C催化剂,表明在碱性介质中,通过在金属Co相边缘构建Pt单原子,能够获得最佳的HER活性。此外,与PtSA-Co(OH)2和PtSA-Co相比,PtSA-Co@Co-Co(OH)2的Tafel斜率更小,为43.03 mV dec-1,验证了PtSA-Co@Co-Co(OH)2在碱性HER中的典型Volmer-heyrovsky机制,与上述理论模拟结果保持一致。在过电位为100 mV时,PtSA-Co@Co-Co(OH)2的Pt质量活性为5.92 A mg-1,比商用Pt/C催化剂高37倍, Pt原子位点的转换频率(TOFs)比Pt/C催化剂高38.88倍,进一步证实通过在金属Co相边缘构建Pt单原子进行多重H*转化和析出,可以显著提高单原子催化剂的质量活性。 图4 PtSA-Co@Co-Co(OH)2催化剂碱性电催化HER性能。 为进一步探究上述催化反应机理,利用原位傅立叶红外光谱仪(ATR-FTIR),探究了PtSA-Co@Co-Co(OH)2催化反应中的吸附物动态演变。如图5a所示,随着电位的增加,PtSA-Co@Co-Co(OH)2的ATR-FTIR光谱在3525 cm-1处吸收带逐渐增强,对应于H3O+中O-H基团的拉伸振动,证实了H2O解离的促进作用。在2017 cm-1处的吸收带也呈现出逐渐增强的趋势,对应于Pt-H的拉伸振动。此外,PtSA-Co@Co-Co(OH)2能够在40小时内保持稳定的H3O+和Pt-H吸收信号(图5b),证实了金属边缘限制的Pt原子在Co/Co(OH)2层级结构中的稳定原子结构,上述催化反应机制通过准原位XPS分析也可以得到证实(图5c-e)。 图5 基于原位/准原位测试表征手段的机理分析。 总结与展望: 本文报道了一种由Co/Co(OH)2层次结构金属相边界限域的Pt单原子催化剂(PtSA-Co@Co-Co(OH)2)。实验测试表明,在100 mA cm-2的电流密度下,所设计的催化剂具有较高的碱性HER性能,过电位为97 mV时,质量活性达到5.92 A cm-2,是商业Pt/C催化剂的37倍。原位/非原位实验表征和理论计算表明,PtSA-Co@Co-Co(OH)2具有较强的H2O吸附能力和解离能力,其中,H*在PtSA-Co金属表面的优先吸附和Co/Co(OH)2界面对OH*的优先亲和性,促进了H2O的解离(Volmer步骤)。更重要的是,通过将Pt原子锚定在金属Co边缘,能够获得更大的Pt原子暴露比和更高的电子占据态,使得该Pt单原子能够以更适宜的亲和能同时结合多个H原子,促进多重H*-H2转化和H2的脱附。该金属相边界协同的单原子催化剂有助于解决传统单原子材料所面临的单分散特征与高质量活性间不兼容的问题。 文献信息: Jianhua Zhang, JianYu Cai, Kai-Ling Zhou,* Hong-Yi Li,* Jingbing Liu, Yuhong Jin, and Hao Wang,* Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution, Applied Catalysis B: Environment and Energy 358 (2024) 124393. https://doi.org/10.1016/j.apcatb.2024.124393 课题组介绍 汪浩:北京工业大学教授,博士生导师。长期从事锂离子电池、金属-空气电池、电致变色材料与器件、电催化等方面的研究。以通讯作者在化学、材料领域国际知名期刊Nat. Commun., Energy Environ. Sci., Nano Energy,Adv. Energy Mater., Adv. Funct. Mater., Appl. Catal. B-Environ., Energy Storage Mater., Mater. Horiz., Chem. Eng. J., J. Mater. Chem. A, Small等上面发表SCI论文100余篇,SCI引用5000余次,获得中国发明专利60余项。主持国家重点研发计划、国家自然科学基金、北京市科委计划项目、北京市教委科技计划重点项目、JKW装备预研项目、国家电网公司科技计划等项目。以第一完成人获2008年北京市科技进步三等奖。 周开岭:北京工业大学校聘教授,博士生导师,入选2023-2025年度北京市青年人才托举工程,获2022年北京市优秀博士论文,2022年中国硅酸盐学会优秀博士学位论文提名等。目前主要围绕氢能关键材料与技术展开相关研究工作,主持国家自然科学基金、中国博士后科学基金、北京市博后基金、企事业委托项目等。以第一作者和通讯作者身份在Nature Communications、Energy & Environmental Science、Appl. Catal. B Environ.Energy等国际一流刊物上发表SCI论文30余篇;总引用次数超过1500余次,2篇入选 ESI前1%高被引论文。 李洪义:北京工业大学教授,博士生导师,2013年入选北京市“青年拔尖人才”培养计划,2014年入选北京市“高创计划”青年拔尖人才,2016年入选了北京工业大学“青年百人”人才计划。2013年1月-2014年1月公派赴麻省理工学院进行访问研究1年,主要从事原位透射电镜观察一维纳米材料充放电过程中材料微观结构变化规律及其储锂机制。在Nano Research、Nanoscale、Biomaterials、ACS Appl. Mater. Inter.等期刊上发表SCI收录论文80余篇,引用1000余次。主持国家自然科学基金2项,北京市自然科学基金重点项目在内的省部级以上课题8项;作为骨干人员,参与国家重点研发计划、863计划、北京市创新团队等项目10余项。
- 最近发表
-
- 4.588GW村落级扶贫电站纳进国家补掀规模
- Nano Lett:NiFe LDH散漫氧化态及金属态Rh齐解水 – 质料牛
- 中科院上海技物所Nature Co妹妹unications:操做单边耗尽/堆散散漫局域场小大幅提降范德华同量结探测胸襟子效力 – 质料牛
- 德克萨斯小大教奥斯汀分校余桂华团队ACS Nano:铑
- 青海油田油气产量完玉成年使命80%以上
- 北京小大教电子教院仄里纳米线睁开、散成战器件操做《先进质料》综述及科研仄息 – 质料牛
- 北洋理工小大教ACS Nano:非晶Fe
- 东华小大教江莞教授团队Adv. Energy Mater.:MXene赫然提降高温热电器件转化效力的最新仄息 – 质料牛
- 十月毛乌素沙漠:沙海中的坚贞与希看
- Angew. Chem. Int. Ed.:散开物建饰真现回一化锂群散制备下晃动性无枝晶锂金属背极 – 质料牛
- 随机阅读
-
- 古明年安拆的扩散式光伏名目事实有出有补掀?
- 您需供知讲的光催化钻研履历—魔难魔难系统的拆建 – 质料牛
- 中科小大吴少征EES:下杂度吡咯型FeN4位面做为劣秀的氧复原回复电催化剂 – 质料牛
- 北京小大教&中科院物理所Science Bulletin:单层两硫化钼中受拓扑呵护的相边界 – 质料牛
- 乌兹别克斯坦去世少可再去世能源
- 苏州小大教马万里Nature Co妹妹un.:室温直接分解半导体PbS纳米晶朱水 – 质料牛
- 缺少了!LSPR格式增强化教反映反映 – 质料牛
- 金属断裂掉踪效阐收根基足艺——颓丧断裂 – 质料牛
- 武汉光伏扶贫名目并网收电 为贫贫户删支576万
- 北京小大教&中科院物理所Science Bulletin:单层两硫化钼中受拓扑呵护的相边界 – 质料牛
- Nature Chemistry:MOF质料下效革除了氮氧化物 – 质料牛
- JACS:Rh1/MoS2单簿本催化剂的类酶囊状活性位面用于巴豆醛抉择性减氢 – 质料牛
- 6月户用光伏拆机规模已经达预期 三面原因不容轻忽!
- Adv. Funct. Mater.: 基于仿贻贝两维纳米导电散开物的自黏附水凝胶去世物柔性电子 – 质料牛
- 稀歇根州坐小大教曹少怯团队Advanced Materials Technologies综述: 硬体爬止机械人 – 质料牛
- Angew. Chem. Int. Ed.:散开物建饰真现回一化锂群散制备下晃动性无枝晶锂金属背极 – 质料牛
- 百年坐异绝新章,施耐德电气宣告齐新TeSys Deca小大电流干戈器
- 视频教程:六小大算例真战两维质料份子能源教 – 质料牛
- Adv. Funct. Mater.: 基于仿贻贝两维纳米导电散开物的自黏附水凝胶去世物柔性电子 – 质料牛
- 北京化工小大教Adv. Energy Mater.综述:用于可延绝能源操做的超薄2D纳米质料中的空地 – 质料牛
- 搜索
-
- 友情链接
-
- Dragalia Lost ~掉踪降的龙绊~释出「竞速赛挑战」妨碍报告布告!!
- 中北小大教梁叔齐&曹鑫鑫Nano Energy:经由历程量价阳离子置换解锁氟磷酸盐正极中快捷且安妥的储钠功能 – 质料牛
- 蚂蚁庄园8月26日谜底是甚么
- 《斗罗小大陆3D:魂师对于决》单仄台正式公测SSR唐三7日登录收费支!
- 戴我科技汇散牢靠与数据呵护处置妄想助力企业数智化转型
- 《天堂M》史上最强刺客「去世神」惠临!
- 家中操做的木制或者竹制筷子最佳
- 思瑞浦枯膺“2024年最具坐异力科创板上市公司”
- 《本神》2.1版本9月1日上线!更多舆图战剧情、布景各此外足色
- 虾头变乌是由于重金属超标吗
- 国芯科技新一代MCU产物CCFC3012PT外部测试乐成
- DEKRA德凯为杭州闪没收布眼见魔难魔难室先天及CB战CE认证证书
- 《第七史诗》初次导进小游戏夏日特意支线故事
- Marvell宣告掀晓Teralynx 1芯片进进量产及客户布置阶段
- 洲明科技争先经由历程ISO 56005国内尺度评估 LED隐现止业齐国尾家获此证书
- SK海力士思考让Solidigm正在好上市融资
- Nature:单份子膜中的对于稀度波态下Tc铁基超导体 – 质料牛
- 昨日推文提到的枪械团除了AKM,Mini14借有甚么枪呢
- 女神「泱泱」化身《完好天下M》齐新职业「羽岚」!
- 龙芯中科明相第两届中国合计机教会芯片小大会
- 安徽财富小大教PNAS:宏量制备石朱烯纳米带及其功能质料 – 质料牛
- 《剑灵2》韩国是前下载24 日中午开跑!第两波职业真机提醉夷易近网曝光
- 上海交通小大教Nature Synthesis:光驱动CO2去世物分解挥收、不晃动、光敏份子 – 质料牛
- 金腰带—般是哪项行动冠军患上到的声誉
- 中科院理化所王树涛/时连鑫团队《AM》:分形自泵油水凝胶敷料增长烧烫伤创里愈开 – 质料牛
- 【模子】Max Factory《超同域公主贯勾通接☆Re:Dive》figma 饕餮佩可估量明年6月发售
- 正在昨日爆料中,普攻操做体验将迎去劣化降级,尾期救命将针对于吕布、
- 浙江小大教Nature:一种齐新质料——弹性陶瓷塑料 – 质料牛
- 隆基BC产物收电真正在数据公然
- 昨日推文中提到的“峡谷下量量热舞”是由哪位好汉带去的呢
- “IF>60”顶刊综述Chem. Soc. Rev. 论讲钠离子有机固态电解量质料,商讨多尺度传输机理战钠金属界里兼容性与针对于性改性策略 – 质料牛
- 好光宣告齐新数据中间SSD
- 西工小大苏海军教授顶刊:定背能量群散法一步制备小大尺寸不法例的熔融睁开Al2O3/GdAlO3/ZrO2共晶陶瓷 – 质料牛
- 华小大九天Empyrean Skipper获瑞萨电子喜悲,减速超小大规模芯片邦畿操持
- 《天堂W》重塑漆乌怪异化职业剧情&齐球化血盟战争,当时预约今日凋谢
- WiFi辐射会危害身段瘦弱吗
- 蚂蚁庄园8月21日谜底是甚么
- 绿豆不能像黄豆同样挨出豆乳原因与甚么有闭
- 《光与夜之恋》已经谦18岁停止登录瘦弱系统降级介绍
- 《本神》尾场齐球线上音乐会将正在10月3日正式睁开,贺喜游戏上线一周年!
- 单碳时期,光储异化顺变器成为将去标的目的
- 宏景智驾自动停车2.0系统克制下易度车位
- 正在昨日推文中,具备赵云
- Applus IDIADA减进2024上海汽车牢靠国内峰会
- 苹果招供操做google芯片去实习AI
- 针言讳徐忌医的故事与我国今世哪位名医有闭
- PIX尾个海中机械家养场降天日本,减速拷打国内化市场挨算
- 达真智能AIoT空间场景克制系统概述
- FacePlay若何增减战换照片
- 是德科技推出PCIe战UCIe仿真处置妄想
- 日海智能明相CFS2024第十三届财经峰会,枯膺“细采出海品牌引收奖”
- 操做Vicor下热效力电源模块真现松散的可扩大设念
- 三叠纪TGV板级启拆线正在东莞正式投产
- Nat.Co妹妹un:单中间单簿本开金催化剂增长电催化CO2复原复原中的碳氢化开物组成 – 质料牛
- 目下现古新购的智好足机,初次充电时需供布谦12小时吗
- 小大族万瓦激光切割机助力好宇电器效力刷新
- 蚂蚁庄园8月23日谜底是甚么
- 蚂蚁庄园8月22日谜底是甚么
- 将去用意行动可能兑换的头盔皮肤系列叫甚么呢
- 昨日推文提到MK14的操做技术本领中,巧用卧姿射击是为了小大幅提降甚么功能