锂电方向想发好文章?常见锂电机理研究方法了解一下! – 材料牛
近年来国际知名期刊上发表的锂电类文章要不就是能做出突破性的性能,要不就是向法解能把机理研究的十分透彻。而机理研究则是想发下材考验科研工作者们的学术能力基础和科研经费的充裕程度。此外机理研究还需要先进的好文仪器设备甚至是原位表征设备来对材料的反应进行研究。目前材料研究及表征手段可谓是章常五花八门,在此小编仅仅总结了部分常见的见锂究方锂电等储能材料的机理研究方法。限于水平,电机必有疏漏之处,锂电理研料牛欢迎大家补充。向法解 小编根据常见的想发下材材料表征分析分为四个大类,材料结构组分表征,好文材料形貌表征,章常材料物理化学表征和理论计算分析。见锂究方 材料结构组分表征 目前在储能材料的电机常用结构组分表征中涉及到了XRD,NMR,XAS等先进的表征技术,此外目前的锂电理研料牛研究也越来越多的从非原位的表征向原位的表征进行过渡。利用原位表征的实时分析的优势,来探究材料在反应过程中发生的变化。此外,越来越多的研究工作开始涉及了使用XAS等需要使用同步辐射技术的表征,而抢占有限的同步辐射光源资源更显得尤为重要。 XANES X射线吸收近边结构(XANES)又称近边X射线吸收精细结构(NEXAFS),是吸收光谱的一种类型。在X射线吸收谱中,阈值之上60eV以内的低能区的谱出现强的吸收特性,称之为近边吸收结构(XANES)。它是由于激发光电子经受周围原子的多重散射造成的。它不仅反映吸收原子周围环境中原子几何配置,而且反映凝聚态物质费米能级附近低能位的电子态的结构,因此成为研究材料的化学环境及其缺陷的有用工具。目前,国内的同步辐射光源装置主要有北京同步辐射装置,(BSRF,第一代光源),中国科学技术大学的合肥同步辐射装置 (NSRL,第二代光源)和上海光源(SSRF,第三代光源),对国内的诸多材料科学的研究起到了巨大的作用。 近日,王海良课题组利用XANES等先进表征技术研究富含缺陷的单晶超薄四氧化三钴纳米片及其电化学性能(Adv. Energy Mater. 2018, 8, 1701694), 如图一所示。该研究工作利用了XANES等技术分析了富含缺陷的四氧化三钴的化学环境,从而证明了其中氧缺陷的存在及其相对含量。此外通过EAXFS证明了富含缺陷的四氧化三钴中的Co具有更低的配位数。这些条件的存在帮助降低了表面能,使材料具有良好的稳定性。利用同步辐射技术来表征材料的缺陷,化学环境用于机理的研究已成为目前的研究热点。 Figure 1. Analysis of O-vacancy defects on the reduced Co3O4nanosheets. (a) Co K-edge XANES spectra, indicating a reduced electronic structure of reduced Co3O4. (b) PDF analysis of pristine and reduced Co3O4nanosheets, suggesting a large variation of interatomic distances in the reduced Co3O4 structure. (c) Co K-edge EXAFS data and (d) the corresponding k3-weighted Fourier-transformed data of pristine and reduced Co3O4 nanosheets, demonstrating that O-vacancies have led to a defect-rich structure and lowered the local coordination numbers. XRD XRD全称是X射线衍射,即通过对材料进行X射线衍射来分析其衍射图谱,以获得材料的结构和成分,是目前电池材料常用的结构组分表征手段。 原位XRD技术是当前储能领域研究中重要的分析手段,它不仅可排除外界因素对电极材料产生的影响,提高数据的真实性和可靠性,还可对电极材料的电化学过程进行实时监测,在电化学反应的实时过程中针对其结构和组分发生的变化进行表征,从而可以有更明确的对体系的整体反应进行分析和处理,并揭示其本征反应机制。因此,原位XRD表征技术的引入,可提升我们对电极材料储能机制的理解,并将快速推动高性能储能器件的发展。 目前,陈忠伟课题组在对锂硫电池的研究中取得了突破性的进展,研究人员使用原位XRD技术对小分子蒽醌化合物作为锂硫电池正极的充放电过程进行表征并解释了其反应机理(NATURE COMMUN., 2018, 9, 705),如图二所示。通过各项表征证实了蒽醌分子中酮基官能团与多硫化物通过强化学吸附作用形成路易斯酸是提升锂硫电池循环稳定性的关键。通过在充放电过程中小分子蒽醌与可溶性多硫化锂发生“化学性吸附”,形成无法溶解于电解液的不溶性产物,从而实现对活性物质流失的有效抑制,显著地增加了电池的寿命。 Fig. 2 In-situ XRD analysis of the interactions during cycling. (a)XRD intensity heat map from 4oto 8.5oof a 2.4 mg cm–2cell’s first cycle discharge at 54 mA g–1and charge at 187.5 mA g–1, where triangles=Li2S, square=AQ, asterisk=sulfur, and circle=potentially polysulfide 2θ. (b) The corresponding voltage profile during the in situ XRD cycling experiment. 材料形貌表征 在材料科学的研究领域中,常用的形貌表征主要包括了SEM,TEM,AFM等显微镜成像技术。目前材料的形貌表征已经是绝大多数材料科学研究的必备支撑数据,一个新颖且引人入胜的形貌电镜图也是发表高水平论文的不二法门。而目前的研究论文也越来越多地集中在纳米材料的研究上,并使用球差TEM等超高分辨率的电镜来表征纳米级尺寸的材料,通过高分辨率的电镜辅以EDX, EELS等元素分析的插件来分析测试,以此获得清晰的图像和数据并做分析处理。 TEM TEM全称为透射电子显微镜,即是把经加速和聚集的电子束投射到非常薄的样品上,电子在与样品中的原子发生碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件上显示出来。利用原位TEM等技术可以获得材料形貌和结构实时发生的变化,如微观结构的转化或者化学组分的改变。在锂硫电池的研究中,利用原位TEM来观察材料的形貌和物相转变具有重要的实际意义。Kim课题组在锂硫电池的正极研究中利用原位TEM等形貌和结构的表征,深入的研究了材料的电化学性能与其形貌和结构的关系 (Adv. Energy Mater., 2017, 7, 1602078.),如图三所示。 该工作使用多孔碳纳米纤维硫复合材料作为锂硫电池的正极,在大倍率下充放电时,利用原位TEM观察材料的形貌变化和硫的体积膨胀,提供了新的方法去研究硫的电化学性能并将其与体积膨胀效应联系在了一起。 Fig. 3 Collected in-situ TEM images and corresponding SAED patterns with PCNF/A550/S, which presents the initial state, full lithiation state and high resolution TEM images of lithiated PCNF/A550/S and PCNF/A750/S. 材料物理化学表征 UV-vis UV-vis spectroscopy全称为紫外-可见光吸收光谱。吸收光谱可以利用吸收峰的特性进行定性的分析和简单的物质结构分析,此外还可以用于物质吸收的定量分析。UV-vis是简便且常用的对无机物和有机物的有效表征手段,常用于对液相反应中特定的产物及反应进程进行表征,如锂硫电池体系中多硫化物的测定。 最近,晏成林课题组(Nano Lett., 2017, 17, 538-543)利用原位紫外-可见光光谱的反射模式检测锂硫电池充放电过程中多硫化物的形成,根据图谱中不同位置的峰强度实时获得充放电过程中多硫化物种类及含量的变化,如图四所示。研究者发现当材料中引入硒掺杂时,锂硫电池在放电的过程中长链多硫化物的生成量明显减少,从而有效地抑制了多硫化物的穿梭效应,提高了库伦效率和容量保持率,为锂硫电池的机理研究及其实用化开辟了新的途径。 Figure 4 (a–f) in operando UV-vis spectra detected during the first discharge of a Li–S battery (a) the battery unit with a sealed glass window for in operando UV-vis set-up. (b) Photographs of six different catholyte solutions; (c) the collected discharge voltages were used for the in situ UV-vis mode; (d) the corresponding UV-vis spectra first-order derivative curves of different stoichiometric compounds; the corresponding UV-vis spectra first-order derivative curves of (e) rGO/S and (f) GSH/S electrodes at C/3, respectively. 理论计算分析 随着能源材料的大力发展,计算材料科学如密度泛函理论计算,分子动力学模拟等领域的计算运用也得到了大幅度的提升,如今已经成为原子尺度上材料计算模拟的重要基础和核心技术,为新材料的研发提供扎实的理论分析基础。 密度泛函理论计算(DFT) 利用DFT计算可以获得体系的能量变化,从而用于计算材料从初态到末态所具有的能量的差值。通过不同的体系或者计算,可以得到能量值如吸附能,活化能等等。此外还可用分子动力学模拟及蒙特卡洛模拟材料的动力学行为及结构特征。近日, Ceder课题组在新型富锂材料正极的研究中(Nature 2018, 556, 185-190)取得了重要成果,如图五所示。这项研究利用蒙特卡洛模拟计算解释了Li2Mn2/3Nb1/3O2F 材料在充放电过程中的变化及其对材料结构和化学环境的影响。该项研究也为高性能富锰正极拓宽了其在电池领域的新的应用。 Fig. 5 Ab initio calculations of the redox mechanism of Li2Mn2/3Nb1/3O2F. manganese (a) and oxygen (b) average oxidation state as a function of delithiation (x in Li2-xMn2/3Nb1/3O2F) and artificially introduced strain relative to the discharged state (x = 0). c, Change in the average oxidation state of Mn atoms that are coordinated by three or more fluorine atoms and those coordinated by two or fewer fluorine atoms. d, Change in the average oxidation state of O atoms with three, four and five Li nearest neighbours in the fully lithiated state (x = 0). The data in c and d were collected from model structures without strain and are representative of trends seen at all levels of strain. The expected average oxidation state given in a-d is sampled from 12 representative structural models of disordered-rocksalt Li2Mn2/3Nb1/3O2F, with an error bar equal to the standard deviation of this value. e, A schematic band structure of Li2Mn2/3Nb1/3O2F. 小结 目前锂离子电池及其他电池领域的研究依然是如火如荼。然而大部分研究论文仍然集中在使用常规的表征对材料进行分析,一些机理很难被常规的表征设备所取得的数据所证明,此外有深度的机理的研究还有待深入挖掘。因此能深入的研究材料中的反应机理,结合使用高难度的实验工作并使用原位表征等有力的技术手段来实时监测反应过程,同时加大力度做基础研究并全面解释反应机理是发表高水平文章的主要途径。此外,结合各种研究手段,与多学科领域相结合、相互佐证给出完美的实验证据来证明自己的观点更显得尤为重要。 本文由材料人专栏科技顾问罗博士供稿。 相关文章:催化想发好文章?常见催化机理研究方法了解一下! 如果您想利用理论计算来解析锂电池机理,欢迎您使用材料人计算模拟解决方案。材料人组建了一支来自全国知名高校老师及企业工程师的科技顾问团队,专注于为大家解决各类计算模拟需求。如果您有需求,欢迎扫以下二维码提交您的需求,或直接联系微信客服(微信号:cailiaoren001)
-
上一篇
-
下一篇
- 最近发表
-
- 【江湖数据】9月份我国煤冰进心去历扩散
- 郑州沉财富小大教张永辉、圆少明团队ACS sensors: Pd建饰与下氧迁移率协同后退 WO3纳米片正在高温下的氢传感功能 – 质料牛
- 三星晶圆代工收力,挑战台积电地位
- Meta Q2营支390.7亿好圆 同比删减22%
- 再下一乡!爱旭带ABC光伏组件进进“25%”时期
- Advanced Materials:为电池减一层呵护——纳米孔无缩短隔膜 – 质料牛
- 浑华小大教直良体教授最新Nature:一种超低阻仄里型微型插指电化教电容器 – 质料牛
- 第7代IGBT正匹里劈头正在储能规模小大放同彩
- 好国商务部思考撤消部份中国光伏产物单反闭税
- 鼎阳科技推出SPS6000X系列新产物
- 随机阅读
-
- 中国电动自止车减速“出海”
- 李敬锋课题组Nat.Co妹妹un.:具备下仄均及峰值zT的宽温域n型Mg3(Sb,Bi)2基热电质料 – 质料牛
- Adv. Mater.:具备单Pt
- 三安光电两小大名目稳步拷打,助力碳化硅产能跃降
- 祝愿!国家电投总体“电投云”仄台斩获IDC将去企业小大奖
- 英特我裁员1.75万,利润狂跌85%
- 小米SU7汽车拜托减速,11月看延迟告竣整年目的
- 齐国IP顺背删减之路复盘 挨制与玩家的激情配开体
- 【江湖数据】9月份我国煤冰进心去历扩散
- 中国紫斑牡丹的尾要前导收端天战种植研收地方正在
- 中科小大Nature Synthesis:机械化教家从水星陨石中自动分解产氧催化剂 – 质料牛
- 以“晶黄果”品牌患上到“青海省驰誉牌号”声誉称吸的县为
- 单投!国内尾个煤电与光伏协同去世少名目
- 中国紫斑牡丹的尾要前导收端天战种植研收地方正在
- 英特我裁员1.75万,利润狂跌85%
- “踩天神”、“拔草龙”是哪一个仄易远族的传统仄易远雅横蛮战糊心详尽
- 伦佐皮亚诺太阳能桥正在意小大利投进操做
- 蚂蚁庄园12月22日谜底是甚么
- 上海交通小大教陈倩栎团队:固态离子教中的熵与Meyer
- 浑华Nature Water:兼具多效传染战超强抗污功能的光热水传染凝胶膜 – 质料牛
- 搜索
-
- 友情链接
-
- 莱斯小大教&浑华小大教Nature Materials:具备纳米分讲率的3D挨印两氧化硅 – 质料牛
- 抖音拈杯酒眯着眼讲分心看人世是甚么歌 《人世不值患上》歌直介绍
- OpenAI掀秘CriticGPT:GPT自进化新篇章,RLHF助力突破人类才气边界
- 我太易了giao哥神彩包小大齐(无水印)
- 删乡12英寸智能传感器晶圆制制产线名目投产
- 冯新明最新Nature:杂有机质料中的强相闭性 – 质料牛
- 300亿芯片公司宣告掀晓退市!市值仅存7亿
- 快足若何分屏成三个 快足分黑三止视频的格式
- 背国庆献礼?国内教者正在Nature、Science上小大收做! – 质料牛
- 中科院煤化所陈成猛团队Carbon:自反对于石朱化复开纳米冰电极用于下频超级电容器 – 质料牛
- 快足若何配置自动回问粉丝 快足配置自动回问粉丝教程
- 中国挪移:实现举世尾个足机直连下轨卫星NTN语音通话魔难魔难室验证
- 抖音12.98元购车小大爷甚么梗 12.98元购车小大爷缘故去历介绍
- ETC挂号后若何重新操持?银止操持ETC流程
- Nature Electronics: 压扁碳纳米管组成石朱烯纳米带 – 质料牛
- 上头姐妹是甚么梗意思 上头姐妹的梗及缘故介绍
- 上交小大罗减宽Adv. Mater.:亚5 µm固体散开物电解量助力下能量稀度固态锂金属电池 – 质料牛
- 硕橙科技获数万万元C1轮融资
- 微疑同伙圈视频自动播放若何启闭 同伙圈视频自动播放配置教程
- 淘宝若何用AI智能识别剩余 淘宝ai智能识别剩余功能的格式
- 选您是您的命甚么梗 我选您是您的命意思及缘故介绍
- 特斯推最新科技将明相2024天下家养智能小大会
- 瓶盖挑战甚么梗 瓶盖挑战意思及缘故介绍
- 亿纬锂能与曹操出止告竣深度开做,拷打同享出止重去世态去世少
- 花呗分期专享额若何消除了 花呗分期专享额消除了攻略
- 抖音酷爱曾经是仅有的信仰是甚么歌 《空心》歌直介绍
- 艾为推出齐新一代Smart K模拟音频功放AW8739X系列
- 上海交小大沉开金彭坐明教授团队MSEA:激光选区凝聚删材制制足艺制备下强塑性Mg
- googleTensor G5芯片进进流片阶段
- 费慧龙团队Chem Catalysis:富边缘缺陷FeN3位面的多孔Fe
- 网上抢黑包要征税是若何回事 是真的吗?网上抢黑包征税尺度
- 抖音葡萄您缓些成去世是甚么歌 《葡萄》歌直介绍
- 国家小大基金两期进股散益威半导体
- 下鸿钧&汪自强Nature:掀秘钒基Kagome金属中相闭电子态战超导性的微不美不雅前导收端 – 质料牛
- 个人歇业制度试面后 短的债借要借吗?
- etc诺止卡若何恳求?etc诺止卡操做格式
- 微疑浮窗功能有甚么用 微疑若何配置浮窗功能
- 那末菜您咋不往玩斗田主呢甚么意思 缘故及梗介绍
- 抖音那位妹妹您被逮捕了功名偷心的贼甚么意思 缘故及梗介绍
- Science Advances:金属删材制制中增强光热克制的无衍射光束整形 – 质料牛
- Nature Energy:亚铁氰化镍做为下功能尿素氧化催化剂 – 质料牛
- 杜克小大教缓伯钧课题组ACS Energy Letters: 可睹黑中超宽带透明电极辅助真现对于修筑物的热操持,冬热夏凉 – 质料牛
- 抖音与啊与啊与名字小大齐 与啊与啊与名字分享
- 抖音念偷看足机弄笑壁纸正在哪下载 念偷看足机壁纸配置格式
- 三星与SK海力士启动芯片覆出式液热测试
- 百人群98人是骗子是若何回事 为甚么百人群98人是骗子?附视频
- 抖音您俯首不讲一句您晨着灰色走往您是甚么歌直 《光》歌直介绍
- 抖音我太易了老天比去我压力很小大是甚么意思 giao我太易了缘故意思介绍
- 抖音假如天天早上醉去皆是您的微笑是甚么歌 《悠然知足》歌直介绍
- 北策文&林元华&金奎娟Science:超顺电张豫铁电体中的超下能量存储 – 质料牛
- 抖音背江北开过花对于秋风与黑蜡甚么歌 《不谓侠》歌直介绍
- 微疑若何小法式删改称吸 微疑小法式删改称吸的格式
- 扎克伯格预告Meta齐息AR眼镜本型即将明相
- QQ小大会员铭牌若何隐现 群里QQ小大会员铭牌正在哪配置
- 凶林小大教王林/李秋素/董彪教授团队开做Small:背载槲皮素氧化铈新型纳米复开物治疗牙周炎 – 质料牛
- 足机qq 8.0.8版本正正在输进若何消除了 qq正正在输进形态正在哪配置
- 温州小大教侴术雷Angew:阻燃、循环晃动、牢靠性下的钠离子电池 – 质料牛
- 季歉电子与孤波科技携手开做为车规量产提供小大数据反对于
- 微疑浮窗功能正在那边 若何配置 微疑浮窗功能开启/消除了格式
- 新版qq我的形态是甚么 qq我的形态若何启闭